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Molecular-based numerical schemes, such as the direct simulation Monte Carlo
(DSMC) method, are more physically appropriate for rarefied gas flows in microelec-
tromechanical systems (MEMS). Itis difficult for them to be statistically convergent,
however, because the statistical fluctuation becomes insurmountably large at the low
Mach numbers that are characteristic of MEMS. An information preservation (IP)
technique is proposed to address this issue. This technique assigns each simulated
molecule in the DSMC method two velocities. One is the molecular velocity used
to compute the molecular motion following the same steps as the DSMC method.
The other is called information velocity. It corresponds to the collective velocity of
an enormous number of real molecules that the simulated molecule represents. Us-
ing the information velocity to compute macroscopic velocity and shear stress may
remove the statistical fluctuation source inherent in the DSMC method that results
from the randomness of the thermal velocity. The IP technique has been applied to
benchmark problems, namely Couette, Poiseuille, and Rayleigh flows, in the entire
Knudsen regime. The characteristic velocities in these flows range from 0.01 to 1 m/s,
much smaller than the thermal velocity of about 340 m/s at room temperature. The
meaningful results are obtained at a sample size 1@, in comparison with a
sample size of 10or more required for the DSMC method at such a range of flow
velocity. This results in a tremendous gain in CPU time. The velocity distributions,
surface shear stress, and mass flux given by the IP calculations compare quite well
with exact solutions at the continuum and free molecular limits, and with the nu-
merical solutions of the linearized Boltzmann equation and experimental data in the
transition regime. © 2001 Academic Press
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1. INTRODUCTION

Advances in micromachining technology have allowed successful fabrication of ma
microelectromechanical systems (MEMS). The characteristic size of MEMS ranges fr:
submillimeter to submicrometer. This provides a tool with wide applications to obsen
measure, and control a new world [1]. In the small-scale world, noncontinuum, rarefied
flow phenomena become prevalent, which may make MEMS behave quite differently fra
their counterparts in macroscopic machinery.

To understand this kind of flow, basic experiments have been carried out, for exam
those on microchannel gas flows [2—10]. The typical channel dimensions were about
micrometer high by several tens of micrometers wide by several thousands of microme
long. The flow was driven by the pressure difference between the inlet and the outlet, v
a velocity of about 0.2 m/s. The measured mass flux was higher than the Navier—Stc
(N-S) solution based on nonslip boundary condition [2—10]. When the slip velocity

2—U)Ldu
o dnjg

1)

USZ

was introduced along the microchannel surfaces, and the tangential momentum acc
modation coefficient was properly chosen, the N-S solution became in agreement wi
experiment [8, 9], where. is the molecular mean free path, a@ﬁﬂs denotes the nor-
mal velocity gradient at the surfaces. As the noncontinuum effect increases further, kin
theory indicates that the N—S equations become invalid. This is also verified by microch
nel experiment [9]: A significant discrepancy between the slope of the measured and
Navier—Stokes flow conductances is found as the outlet pressure of helium flows decrez

Molecular-based schemes are more physically appropriate for rarefied gas flows.
most popular approach is the direct simulation Monte Carlo (DSMC) technique that w
developed and popularized in the context of hypersonic aerospace applications [11]. S
researchers have applied it to microchannel flows [12—15] and have found it very difficuli
obtain statistically convergent results under experimental conditions of interest in MEN
[2-10]. Unlike hypersonic problems, microdevices often operate at low or moderate Me
numbers, which are characterized by a small ratio of macroscopic to thermal veloc
Because the statistical scatter inherent in DSMC decreases with the inverse square rc
the sample size, an extremely large sample size is required to reduce it to a level that is s
in comparison with the macroscopic velocity. This makes DSMC simulation of MEMS flow
extremely time-consuming. Actually such a simulation is beyond the capabilities of curre
computers [13, 15].

An information preservation (IP) technique has been proposed to address this issue |
It assigns each simulated molecule in the DSMC method two velocities. One is the ther
velocity used to compute molecular motion following the same steps as the DSMC meth
The other is called information velocity; it corresponds to the collective velocity of th
enormous number of real molecules that the simulated molecule represents. Macrosc
velocity and shear stress are computed from the information velocity to remove the statist
scatter source inherent in the DSMC method due to the randomness of the thermal velo
A preliminary study [16] showed that the IP technique was highly effective in reducing tl
statistical scatter.

In this paper, the IP technique will be systematically studied. First, the statistical flL
tuation inherent in the DSMC method will be analyzed. Second, the IP technique w
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be described, and molecular collision diameters in accordance with the IP technique
be computed using experimental data on viscosity coefficients. Next, the IP method wil
applied to benchmark problems. Finally, conclusions will be given.

2. STATISTICAL SCATTER INHERENT IN THE DSMC METHOD

As with most molecular-based numerical methods, the DSMC method suffers from ¢
tistical scatter. Scatter is generally regarded as the most serious practical and theore
difficulty associated with this method. As pointed out by many researchers [12—-15], suc
difficulty becomes insurmountable for low-speed flows.

To clarify this fact, let us look at how the DSMC method computes macroscopic veloc
U, in a cell. Consider a uniform flow with velocity ; then

1 1
Uy, =— Ck=uUu — , 2
¢ Nk;k k+Nkz:;Ct,k 2)

where N is the sample size of simulated molecules in the cell, @ the molecular
velocity. According to kinetic theoryy consists of two parts: the thermal perk and the
macroscopic pamy. The expression; i is random and obeys a Maxwellian distribution in
an equilibrium gas. The DSMC method stocg$n a computer and uses it to compute both
the molecular trajectory and,. Note that there is an explicit terlﬁ 2521 ¢k in Eq. (2)
that makedJ, different from the exact value ak. It is actually a source that results in the
statistical fluctuation decreasing with the inverse square root of the sample size.

The order of this statistical scatter source is easily estimated through an actual DS
simulation. Consider a stationary homogeneous argon gas at temperature of 273 K.
values of macroscopic velocity given by the DSMC method in 100 independent rui
because of the existence of the scatter source, fluctuate around the exact value of
The x components of the values against the sample sizes are partly given in Table I.
example, the absolute maximusi,., at a sample size of 2 10° is 0.5301 m/s. This is
unacceptable for many low-speed applications such as microchannel flows where the in
velocity in experiments [4—10] was about 0.2 m/s. Further increasing the sample siz
beyond the capabilities of current computers, particularly for multidimensional flows.

3. INFORMATION PRESERVATION METHOD

The IP technique assigns each simulated molecule in the DSMC method two velocit
One is the molecular velocity (i.ecy), used to compute molecular motion following the
same steps as the DSMC method. The other is called information velocity; this is the col
tive velocity of the enormous number of real molecules thasthglesimulated molecule
represents, and therefore correspondstdhe term information velocity was invented to
distinguish it from macroscopic velocity, which is understood as an average of molecular
locities over real molecules representedhmnysimulated molecules inthe DSMC method.
The IP technique employs the information velocity to compute the macroscopic velocit

1 N
Ug= NZUkZUk- (3)
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TABLE |
Statistical Fluctuation vs Sample Size in DSMC Simulation
of a Stationary Homogeneous Argon Gas at 273 K

us in m/s at different sample sizes

No. of runs 2x 10 2 x10° 2 x 10° 2 x 10 2x10°
1 2.3215 —0.2243 —0.1301 0.0904 0.0157
2 —0.4853 —0.0825 0.1074 —0.1038 —0.0023
3 —2.5338 —-0.1724 —0.1802 —0.0397 0.0267
4 —2.0137 0.7793 —0.1394 0.0138 0.0022
5 —0.8144 0.3451 0.1233 0.1202 0.0014
98 —1.2243 —-0.1722 0.0231 —0.0722 —0.0043
99 —1.5905 —0.4683 —0.0655 —0.0207 0.0121
100 —5.0029 0.7412 0.0065 —0.0665 0.0226
Omax 6.2537 1.8344 0.5301 0.1546 0.0365

2 u; isthex component of the macroscopic velocity fluctuation caused by the statistical
scatter, with the amplitude @fax.

The statistical scatter sour({gzl'(\‘zl Gtk in the DSMC formula (2) is removed in the IP

formula (3). For a uniform flow, the macroscopic velocity calculated using (3) is the exe

value ofuy at any sample size. Since the collective information propagates directly throu

molecular motion, a correct transport rate is expected over the entire Knudsen regime.
An implementation of the IP method can be summarized as follows:

(1) Assign simulated molecules an information velocityand molecular velocitg.

(2) Setthe initial value ofi to be the initial flow velocity.

(3) Move the molecules using with the same algorithms and models as the DSMC
method that have been described in detail in Ref. [11].

(4) In atime stepAt, ux may be changed as a result of the following causes:

(4a) Impact with a wall. Set the reflected information velocity in accordance with tk
statistical behavior of an enormous number of real molecules. For example, it is equa
the wall velocity for a diffusely reflecting surface.

(4b) Entry into the computational domain from the boundaries. Set the informatit
velocity in accordance with the boundary conditions.

(4c) Acceleration by external forces acting on a cell,

azi, (4)

oAV
whereF is the sum of the external forces, apcand AV are the density and volume of
the cell, respectively. The acceleration will contribute a velocity increraemtt to every
simulated molecule within the cell.
(4d) Collision with other particles. A simple scheme satisfying momentum conserv
tion is employed to distribute postcollision information velocities of two simulated particle
_ myu; + MUy,

Ujrz=Uijz2 W’ %)
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where superscripts * aridienote pre- and postcollision, respectively. An alternative schen
is to keep the information velocities unchanged during the collision process. Both schel
were tested in simulation of Couette, Poiseuille, and Rayleigh flows, and both gave ident
results. This is easily understood because the scattering of the thermal velocities du
the collision process is isotropic in the center of mass frame of reference according
the variable hard sphere (VHS) model [11, 17], which is used to describe the interac
between simulated particles. Such an isotropic scattering makes schemes that satisf
momentum conservation the same in a statistical sense.

(5) Compute macroscopic quantities using the information quantities. The shear st
on a surface element with ar@aA,, during a sampling intervdl is equal to

Z m; (U7 — Uzk)

k=1
= , 6
Tw CAA. (6)

whereN,, is the number of molecules hitting the element dutingubscriptr denotes the
tangential direction of the element, and supersciiptndre denote the values before and
after striking the element, respectively. The macroscopic velocity in a cell is an arithme
mean of all sampling information velocities duribgand is obtained using Eg. (3).

(6) For steady flows, repeat steps 3 and 4 until the flow reaches a steady state. T
repeat steps 3-5 to sample and obtain the macroscopic velocity distribution and shear s
For unsteady flows, repeat steps 2-5 over the evolution period to obtain the macrosc
guantities period through ensemble average.

4. MOLECULAR COLLISION DIAMETERS

Molecular interaction is usually weakly attractive at alarge distance and strongly repuls
at a short distance. An approximation is to take it into account only when the distar
decreases to a finite cutoff value that is defined as molecular collision diameter. It is knc
that, to obtain accurate information from kinetic analysis and calculation, collision diamet
must be chosen to give agreement between kinetic and experimental data for some |
guantity, such as viscosity coefficient [18]. Therefore, they are not universal but depenc
molecular interaction models. For instance, the collision diameters given by the varia
hard sphere (VHS) model [17] and by the variable soft sphere model [19], which are of
employed in DSMC calculations, are different.

The IP technique computes postcollision information velocities according to Eq. (
whereas the DSMC method distributes them along with the thermal velocities. This diff
ence between the molecular interactions may make the collision diameters in accord
with the DSMC and IP methods slightly different. A procedure to determine the collisic
diameters in accordance with IP using experimental data on viscosity is given in Appendi>

The hard sphere model assumes that the collision diameter of a molecule is a constan
the scattering from molecular collision is isotropic in the center of mass frame of referen
It is often employed in kinetic studies [11, 18, 20—23]. The procedure given in Appendix
has been applied to compute IP collision diametigsunder this model. The values for
five common gases (He, Ar,JNO,, and CQ) obtained using experimental data on the
coefficients of viscosity at 273 K [18] are given in Table II. The corresponding shear str
distributions along theg direction in the upper half channel of the Couette flow are give
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TABLE Il
Collision Diameters in Accordance with the IP Method
at a Reference Temperature of 273 K

He Ar N, Oz COZ

dus x 101°(m) 2.365 3.693 4.128 3.948 5.013
ref x 10°(m) 2.463 4.283 4.312 4.295 5.620
o 0.657 0.811 0.738 0.773 0.933

in Table lIl. The resulting coefficients of viscosityey x 10° (N sn?) are 1.876, 2.135,
1.660, 1.919, and 1.388, respectively, and compare well with the measured data 1.
2.117, 1.656, 1.919, and 1.380 [18].

Coefficients of viscosity in the hard sphere model are proportional to the temperat
to the power of 0.5. For real gases, however, the paweften significantly differs from
0.5. (The values of» for many gases were given in Table 14 in [18], and those for He
Ar, N2, O,, and CQ are included in Table 1l.) To match this real-gas characteristic, th
VHS model was introduced [17]. It assumes that the scattering from molecular collisior
isotropic in the center of mass frame of reference, whereas the collision diameteris afunc
of the relative velocity, ,

(2K T/ my c2)* 07 1/2
25— w)

d = dref (7)
whered,; is the reference collision diameter at reference temperdiyrand my is the
reduced mass. Using the procedure given in AppendigAjn accordance with IP has

TABLE IlI
Shear Stress Distributions for Five Gases in the Upper Half Channel
of the Couette Flow Kn = 0.01,u, = 1 m/s, T = 273 K) Given by IP Cal-
culations with the Hard-Sphere Model

Shear stress (N/f
y/h He Ar N, 0, CcO,
0.0000 1.0412 3.2740 2.6896 29151 3.4353
0.0333 1.0424 3.2723 2.6879 2.9133 3.4261
0.0667 1.0436 3.2719 2.6880 2.9137 3.4187
0.1000 1.0440 3.2715 2.6901 2.9107 3.4211
0.1333 1.0423 3.2757 2.6908 2.9087 3.4266
0.1667 1.0430 3.2659 2.6882 2.9061 3.4352
0.2000 1.0482 3.2847 2.6827 2.8942 3.4289
0.2333 1.0489 3.2641 2.6725 2.8976 3.4305
0.2667 1.0482 3.2734 2.6973 2.9256 3.4254
0.3000 1.0436 3.2918 2.7006 2.9209 3.4496
0.3333 1.0485 3.2692 2.7301 2.9332 3.4601
0.3667 1.0426 3.3026 2.7183 2.9286 3.4393
0.4000 1.0477 3.2828 2.7262 29178 3.4444
0.4333 1.0455 3.2933 2.7071 2.9201 3.4583

0.4667 1.0447 3.2515 2.6936 2.9227 3.4461
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TABLE IV
Shear stress Distributions for Helium at Five Temperatures in the Upper Half
Channel of the Couette Flow Kn = 0.01, u,, = 1 m/s) Given by IP Calculations
with the VHS Model

Shear stress (N/fh

y/h 89.7K 190.6 K 256.7K 372.8K 456.7 K
0.0000 0.9144 0.9826 1.0297 1.0595 1.0923
0.0333 0.9149 0.9855 1.0305 1.0585 1.0917
0.0667 0.9154 0.9872 1.0312 1.0580 1.0926
0.1000 0.9159 0.9898 1.0333 1.0572 1.0908
0.1333 0.9160 0.9951 1.0359 1.0543 1.0888
0.1667 0.9171 0.9968 1.0351 1.0557 1.0872
0.2000 0.9161 0.9982 1.0348 1.0621 1.0866
0.2333 0.9165 0.9961 1.0362 1.0576 1.0885
0.2667 0.9182 0.9939 1.0336 1.0551 1.0870
0.3000 0.9158 0.9957 1.0299 1.0563 1.0893
0.3333 0.9134 0.9973 1.0291 1.0631 1.0902
0.3667 0.9118 0.9881 1.0315 1.0606 1.0937
0.4000 0.9116 0.9855 1.0336 1.0612 1.0967
0.4333 0.9127 0.9940 1.0330 1.0656 1.0966
0.4667 0.9101 0.9408 1.0295 1.0684 1.0976

been computed. The resulting valueslgffor the five common gases are given in Table II.
The relation of shear stress and viscosity versus temperature may be studied with this m
The shear stress distributions along yhdirection in the upper half channel of the Couette
flow for helium at five temperatures of 89.7, 190.6, 256.7, 372.8, and 456.7 K are gi\
in Table IV. It is seen that the shear stress increases as the temperature increases. 1
easily understood because larger thermal velocities at higher temperatures accelerat
frequency of momentum exchange between the gas and the plates. Figure 1 compare
relations of coefficient of viscosity of helium to temperatures given by the IP method, thec
and experiment [18], which agree quite well.
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FIG. 1. Relation of viscosity coefficient of He versus temperature given by the IP method, theory, a
experiment.
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5. UNIDIRECTIONAL FLOWS

Consider three typical unidirectional flows, namely, Couette, Poiseuille, and Raylei
flows. They cover the most fundamental and important mechanisms that control a nurr
of flows in MEMS applications. Because of the clear mechanisms, any drawbacks, if
sociated with a new method, will be easily found. Therefore, they have been widely u:
as benchmark problems to test and verify new analytical and numerical methods. E>
solutions are available at the continuum and free molecular limits for these flows, and th
are analytical or numerical solutions of the linearized Boltzmann equation in the transiti
regime [20-23].

The linearized Boltzmann equation was analytically or numerically solved under the f
lowing assumptions [20-23]: (1) the gas molecules are hard spheres with uniform size
undergo complete elastic collisions between themselves; (2) the plate surfaces are diffu
reflecting; and (3) the disturbances are so small that the Boltzmann equation and boun
conditions may be linearized around an equilibrium state at rest. The IP simulated col
tions are chosen to be consistent with these assumptions. The simulated gas is argon
temperature and pressure of 273 K and 0.01 atm, respectively. The hard sphere moc
employed to describe molecular interaction. The plate surfaces are assumed to be difft
reflecting, with the same temperature as the gas. The plate velgcity0.2 m/s for the
Couette flow and 1 m/s for the Rayleigh flow. The pressure distribution along direc-
tion for the Poiseuille flow is the same as that used in numerically solving the lineariz
Boltzmann equation [21],

P = Po(1+ ax/h). 8)

The values ofp, anda are chosen to be 0.01 atm an@ x 107°, respectively, which result
in a flow velocity of about 0.01 m/s. The characteristic velocities in the three flows a
all very small in comparison with the thermal velocity of about 340 m/s. Such small flo
velocities not only are of great interest in many MEMS applications, but also may stric
test the ability of the IP technigue to reduce the statistical fluctuation in the conventiol
DSMC method.

5.1. Couette Flow

The Couette flow is a steady flow that is driven by the surface shear stresses of two infi
and parallel plates moving oppositely along their own planes (Fig. 2). The Knudsen hum

y=+h/2

g

y=-h/2

FIG. 2. Schematic diagram of the Couette flow.
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TABLE V
Computational Parameters for the Couette and Poiseuille flow's

Kn 0.01 02/ 7 2/ 7 20/ 7 100
N 9,000 900 900 900 900
N, 300 30 30 30 10

AL/ Ans 0.33 295x 107! 2.95x 1072 2.95x 1072 0.001

2The time step is Bins/vm, With vy, = /2kT/m.

is defined aK n = Ays/ h, whereh is the distance between the plates apglis the mean
free path, which is about86 x 10~® m under the present conditions (0.01 atm and 273 K)

The IP simulation starts from a stationary uniform flow field. The computational parat
eters are given in Table V, wheM, is the total number of simulated moleculég, is the
number of cells, and¢ is the cell size. When the flow evolves and reaches a steady ste
the code starts to sample. The macroscopic velocity and surface shear stress are obt
according to step 5 in Section 3.

In the transition regime, three Knudsen numbers are consider2dy®, 2/./7, and
20/./7. To resolve the flow fields well, 30 cells are employed in IP calculation for all th
three cases. With a slip velocity model

2—0 du

Uly—+h/2 = Uy F 7)%5 a/ " ()
y=-+h/2

the velocity distribution across the channel given by the Navier—Stokes equation is

U, 14+22-o0)Kn/o

Uns 2 y
= =. 1
/ (10

For the diffusely reflecting surfaces, the tangential momentum accommodation coeffic
o isequalto 1. Figure 3 compares the velocity profiles given by the IP method, the lineari

1.0
0sF o Ip
0B} Sone, et al.
— — — Gross & Ziering
0.7F ———— SlipN-S, o=1

wu
o
w

y/h

FIG. 3. Comparison of velocity profiles in the upper half channel of the Couette flow in the transitic
regime given by the IP method, linearized Boltzmann equation, and slip Navier—Stokes equidtigns.

0.2//7, Kny = 2//7, andKn, = 20//7.
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FIG. 4. Relation of drag versus Knudsen number for the Couette flow.

Boltzmann equation [20, 21], and Eq. (10). The velocity at the channel susfabe<£ 0.5)
significantly decreases & increases. The IP profiles are in excellent agreement with tf
numerical solutions of the linearized Boltzmann equation [21], which are more accur
than the four-moment solutions based on the second approximation [20]. The slip N
profiles agree with the other threelan = 0.2/./7, but deviate from them a¢nincreases.

In the continuum regimeKn = 0.01), the IP and slip N-S velocity profiles compare
quite well; e.g., the gas velocities at the surfaces given by the IP method and model (9)
4+0.9791u,, and+0.98044,,, respectively. In the free molecular regimer{ = 100), the
gas velocity adjacent to the plate surfaces is only about 38, 06uch a discontinuity is
a typical phenomenon of very large Knudsen flows. During a time ste@Baf§ vy, the
average number of a simulated molecule colliding with the lower and upper plates is ab
33. This means that the information velocity of a certain simulated molecule frequently le:
from —u,, to u,,, or vice versa. The value at the sampling moment, i.e., at the end of t
time step, is subject to the final collision that occurs at the lower or upper plate. The thert
velocity plays a role in such a process and therefore results in a statistical fluctuati
To reduce this fluctuation, ¢ 10* sampling time steps are employed in simulating the
Kn = 100 case, much larger than 200 for the continuum case and 2000 for the transitic
cases.

Figure 4 compares the relation of the surface shear stress versus the Knudsen nu
given by various methods. The normalization factor is the collisionless solutipa
ovmUy, /+/7 . The IP results agree quite with the exact solution in the free molecular regin
with the numerical Boltzmann solution [21] in the transition regime, and with the sli
Navier—Stokes solutioro(= 1)

NS 57Kn

o 8(1+ 2Kn) (11)

in the continuum regime.

5.2. Poiseuille Flow

The plane Poiseuiile flow is a steady flow confined between two stationary infinite a
parallel plates and is driven by a pressure gradient parallel to the plates (Fig. 5). The
simulation starts from a uniform flow field. The acceleration that results from the pressi
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y=+h/2

yt_, x dp/dx

y=-h/2

FIG.5. Schematic diagram of the Poiseuille flow.

distribution (8) isa = apo/ph. During each time steprt, the x-components of both in-
formation and thermal velocities of simulated molecules obtain a velocity incresment
Using the ideal gas equation of state, we have

aAt = 0.5av, K NAt*, (12)

where At* = vy, At/Ays, andKn has the same definition as in the Couette flow. On thi
other hand, the molecules are retarded when they collide with the stationary plates
are assumed to be diffusely reflecting: The information velocities become zero, while
molecular velocities are computed according to a Maxwellian distribution. The flow evolv
and reaches a steady state when the acceleration and retardation are in balance.

Figure 6 shows the relation of the mass flQy with the Knudsen number given by the
IP method, the linearized Boltzmann equation [22], experiment [24], and the N-S equa
with the slip boundary condition (1Qy has been normalized yu*h, with u* = avp,.
The comparison of the IP mass flux with the numerical Boltzmann solution [22] and t
experimental data [24] in the transition and near free molecular regimes is satisfactory.
slip Navier—Stokes mass flux (= 1),

M 2(Kn'46)
puth —  15/7

(13)

-0

@) P

Ohwada, et al.

---------- Slip N-S, o=1
+ Experiment

.
3
\

1 PETEENTETT | EEIETTT BRI | IR |
10* 107 10° 10' 10°
Kn

w & O NDO

| LA AR RS RARL) LLL

Q,/puh
N

FIG. 6. Relation of the normalized mass flux versus Knudsen number for the Poiseuille flow. The 1st, 1
and 18th experimental data from the smiéh side are for air, 2nd, 3rd, 7th, 10th, 13th, and 15th data fo;,CO
4th, 8th, and 9th data for He, 5th, 11th, and 16th data foradd 6th, 12th, 17th, and 19th data for feron-12.
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agrees well with the IP results, as the Knudsen number is less than 0.05. There is a n
mum mass flux at some intermediate Knudsen number. This minimum was first obser
experimentally by Knudsen [25] and therefore is often referred to as the Knudsen m
imum or the Knudsen paradox. The existence of such a minimum may be theoretic:
proven. The Navier—Stokes solution (13) shows that in the continuum regime the m
flux decreases as the Knudsen number increases, while the free molecular theory |
cates that the mass flux through a duct with a finite lerigis proportional to the log-
arithm of L/ h [26]. Hence, the free molecular mass flux at a large endugih will be
higher than the continuum solution at a small but nonaémoTherefore, the minimum
inevitably appears at some intermedi&te The confirmation by the present IP calcula-
tion of the Knudsen minimum and its excellent agreement with the exact numerical sc
tion of the linearized Boltzmann equation and experimental data near this minimum st
clearly the fitness of the IP technique in predicting fine flow characteristics in the transiti
regime.

Figures 7a—7c show the velocity profiles obtained using the IP method, the lineari:
Boltzmann equation [22], and the slip Navier—Stokes equation at Knudsen numbers
0.2/4/7,2//7,and 20 /7. The IP profiles compare well with the numerical Boltzmann

b o9

2
3
I o P 0.3 o P
0.4F Ohwada, et al. Ohwada, et al,
e Slip N-S, o=1 ————— Slip N-S, o=1
0 1 1 1 o 0 1 1 1 1
0 0.1 0.2 0.3 04 0.5 0 0.1 0.2 0.3 04 05
y/h y/h
C 12
(o3 o]
09
3 osf
0.3
(o] P
Chwada, et al.
---------- Slip N-§, o=1
ol 0 0
0 0.1 0.2 0.3 04 0.5
y/h

FIG. 7. Comparison of IP, linearized Boltzmann, and slip Navier—Stokes velocity profiles in the transitic
regime for the Poisedille flow: (ns = 0.2//7; (b) Kny, = 2//7; (C)Kn, = 20/ /7.
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FIG. 8. Comparison of IP and slip N-S velocity profiles in the continuum regitke = 0.01) for the
Poiseuille flow.

solution [22]. The slip N-S solutiors(= 1)

Uys 14 4Kn—4y?/h?

u 5/7Kn (14)

deviates from the two others &) increases.

Figure 8 compares the IP and slip N-S velocity profiledKat= 0.01, which agree
with each other. Figure 9 shows the IP velocity profilekat = 100. There is a velocity
discontinuity between the plate surfaces and the adjacent gas as expected. The numl
sampling time steps is 500 for the Knudsen 0.01 case, 5000 for the transitional flows,
2 x 10° for the Knudsen 100 case to reduce the statistical scatter caused by the freq
leaps of the simulated molecules between the lower and upper plates.

5.3. Rayleigh Flow

In the Rayleigh flow, the stationary plate acquires a velocity,0fn the x direction at
the initial time ¢ = 0). This impulsive motion of the plate induces an unsteady gas flo

15F;
)
I 0000000000
Oo0oo

uu’

05

0...||||.|I||.,I..||I..,.
[ 0.1 0.2 0.3 04 0.5

y/h

FIG. 9. IP velocity profile in the free molecular regini& n = 100) for the Poiseuille flow.
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outer boundary

.

—_— Uw(t>0)

y=0

FIG. 10. Schematic diagram of the Rayleigh flow.

(Fig. 10). The ensemble average is employed in IP simulation of the unsteady process.
computational domain is between the plate surface and an outer boundary. The specu
reflecting condition is applied to the outer boundary. It is chosen far away from the plate
avoid possible backward disturbance to the gas motion near the plate. The computati
parameters are given in Table VI, whe¥g is the sampling interval of time step.

For a time much less than the mean collision titgé= Ays/vm), few collisions take
place. The situation is close to the free molecular flow that has the velocity distribution

Uem = 0.5u,,erfc(y/vmt), (15)

where erfc denotes the complementary error function.
For a time much longer than the mean collision time, so many collisions take place t
the flow can be described by the Navier—Stokes equations. With a slip boundary condi

du

Uly—0 = Uy, + Aus— s 16
ly=0 + HSgy o (16)

the Navier—Stokes velocity solution may be written as [27]
Uns _ erfc y — exply* + aot*) erfc = + +/8ot* an

Uy, 2./at* ./

wherea, = 5,/7/16, y* = y/Aps, andt* = t/z.
The linearized Boltzmann equation has been solved using the four-moment method
two special cases [23]. The solution may be written as

ud . . . .
M — S($1)[0.13% 7Y — 6.10p16™Y'] + S(¢2)[0.361e 7Y + 7.36p,e Y] (18)

w

TABLE VI
Computational Parameters for the Rayleigh Flow

t/rc N Nc Ns LO/)‘HS AZ/)‘HS At/‘[c
0.01 900 30 5 0.1 33x 102  0.002
5 1,500 50 5 15 0.3 0.2

100 24,000 800 5 240 0.3 0.2
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FIG. 11. Comparison of IP and theoretical velocity profiles at the free molecular limit for the Rayleigh flow

for a short time{( « ), and

L
uﬁf”’ = erfo(doy*/2t") — 1.24 ex(dZy*/4t™) /

w

Vrt* 4 0.292 exg—6.86y*) //t* (19)

for a long time { > 1), whereg; = t* — a1 y*, ¢po = t* — apy*, g = 0.799 a, = 3.33,
b; =3.57 b, = 7.42, d, = 1.54, andS(z) is a step function that is equal to 0 and 1 for
z < Oandz > 0, respectively.

Figure 11 compares the velocity profilestat 0.01r; given by the IP method and
Egs. (15) and (18). The IP profile compares very well with the exact solution (15) of t
collisionless theory. The four-moment profile is seen as discontinuous, and the part
shown slightly increases from5.9(y* = 0.0031 to —5.7(y* = 0.0125. This discontinu-
ity is not physically reasonable.

Figure 12 compares the velocity profiles at 100z, given by the IP method and Eqs. (17)
and (19). The IP and slip N-S profiles are in excellent agreement, and the four-mon
profile slightly differs from them. The difference between the four-moment solutions a
exact solutions and the IP results may be caused by the poverty of the first approxima

0.8 ¥ t= 1007,

o P
Slip N-S, =1
: o5l K RSttt Gross & Jackson

wu

FIG. 12. Comparison of IP and theoretical velocity profiles at the continuum limit for the Rayleigh flow.
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FIG. 13. Comparison of IP, DSMC, and theoretical velocity profiles in the transition regime for the Rayleic
problem. The DSMC sample size is21(?, in comparison with the IP sample size o&k610°. (a)t = 1.; (b)
t = br..

which was the only approximation employed in the analysis [23]. In fact, the first appro
imation solution for the Couette flow was found to deviate significantly from the secol
and third approximation solutions [20].

For a time comparable with the mean collision time, the DSMC method is employed
give a benchmark solution. Such a calculation, however, is very time-consuming. To red
the DSMC statistical scatter to a level that is small in comparison with the characteris
velocity u,, of 1 m/s, an enormous sample size ok A0® is used. It takes about 180
CPU h on a DEC Alpha server 1000A, abouk3.0* times as long as required by the IP
method. Figures 13a and 13b compare the IP and DSMC velocity profites at and
t = 5t¢, respectively. The collisionless and four-moment, (15) and (19) are also shown
references. A satisfactory agreement is obtained between the IP and DSMC results, thq
some statistical fluctuation is still seen in the latter.

Figure 14 shows the relation of the normalized surface shear stress versus time give
the IP and other methods. The normalization factor is the free molecular solution

_ pvmuw

Tem = . (20)
2/
1fF —@—0-—1o o
] 8o,
08F
osf
orf
06F
g o
< 05F
oaE o P
F a DSMC
03F ---------- Gross & Jackson
[ N-8, slip
02F ... ™M
01
03 Lol el ol ot 0ol
10° 10% 107 10° 107 107

tit,

FIG. 14. Relation of drag versus time for the Rayleigh flow.
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The slip N-S solution obtained using Eqgs. (16) and (17) is

s _ o /ra, exp(aot™)erfc(v/aot*). (21)
Trm
The IP results agree quite well with the collisionless solutioh &t t., with the DSMC
results at ~ 1., and with the slip N-S solution at> 5z..

6. CONCLUSIONS

An information preservation technique was proposed to overcome the serious statis
fluctuation inherent in the DSMC method for low-speed rarefied gas flows. This technic
was applied to benchmark problems, namely the Couette, Poiseuille, and Rayleigh flc
over the entire Knudsen regime. The characteristic velocities in these flows ranged from |
to 1 m/s, which were much smaller than the thermal velocity of about 340 m/s. Meaning
results were obtained at a sample size G-10%, in comparison with a sample size of10
or more required for the DSMC method at such a range of flow velocity. This results
a tremendous gain in CPU time. A comparison of the velocity distributions, surface sh
stresses, and mass fluxes given by the IP technique with exact solutions at the continuur
free molecular limits, and with numerical solutions of the linearized Boltzmann equati
[21, 22], experimental data [24], and DSMC results in the transition regime, showed
excellent agreement.

APPENDIX A

Procedure for Computing IP Collision Diameters

Consider a plane Couette flow (Fig. 2). The plates move oppositely at a speed of 1 r
The IP simulated conditions are the same as those in experiments to measure viscosity
101, 32 Pa and 273 K [18]. The plate surfaces are assumed to be diffusely reflecting, \
the same temperature as the gas. The distance between the plates,is, Wdtereir, s is
the molecular mean free path under the hard sphere model [18],

16 nun

Dis =

Here 1 is the coefficient of viscositym = «/2kT/m, m is the molecular mask is the
Boltzmann constant, and and T are the gas density and temperature, respectively. Tt
simulation employs 300 uniform cells, with 30 simulated molecules in each cell initiall
The time step is Biys/vm.

The simulation starts from an initial flow field with a linear velocity distribution. After
10,000 time steps, it reaches a steady state. Then the code starts to sample. The shea
acting on each side of a cell is calculated as

N-— N+
> miup =) muy
j=1 j=1

tsAA

: (A2)

Txy =
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whereN~ and N* denote the numbers of simulated molecules across the side from t
negative and positive directions gf respectivelyu is the x component of information
velocity, ts is the sampling time, and A is the side area. The coefficient of viscosity results
from

TxyAY

— A
=30 (A3)

whereAU = U, — Uy, Ay = Yo — Va, Up andU, are the macroscopic velocities in the cell
and its adjacent cell, ang) andy, are they coordinates of the cell centers. The coefficient
of viscosity is then obtained by averaging over all cells except those in the Knudsen la
close to the surfaces.

For the hard sphere model, the molecular collision diameters are initially set to be

5mvm 12
Ops= [ —— ; A4l
ne ( 16\/Z,u > (A4)

for the variable hard sphere (VHS) model [22], the reference collision diameters are initic
set to be

'mKT 7 1/2
dref= |: >V T/n :| . (A5)

405 — 2w) (7 — 20)n

The calculated coefficient of viscosity decreases as the valdg of d.; increases for the
same type of gas. The acceptable value needs to satisfy the condition

’ Mecal

— 1’ < 0.01, (AB)
Mexp

wherepuq, andu., are the calculated and measured coefficients of viscosity, respective

APPENDIX B

Computational Efficiency of the IP Method

Since the IP technique is based on the DSMC method, we need to analyze the DS
computational efficiency first. The total CPU time used in DSMC calculations may |
expressed as

TDSMC = Nstep' -Fs.tep (Bl)

whereNggpis the total number of time step}gtep is the average CPU time spent each time
step,

-Fstep = Neei - Mage - -Fp’ (BZ)

Neer is the number of cellsM,. is the average number of particles per cell, E_Iads the
average CPU time spent per partidig;., has different expressions for steady and unstead
problems,
Nstep _ Nsteady"l‘ Nsample fOI’ Steady (B3)
Nioop * Nsingles for unsteady
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whereNgeaq,iS the number of time steps needed to evolve and reach a steady state fror
initial stateNsampeiS the number of sampling time stepé,,, is the number of independent
runs for generating ensemble statistics, &f,. is the number of time steps in a single
run, which is the ratio of the evolution perid@ to the time step\t. Ngeaqymay be written
as

AP

_ B4
v - At (B4)

Nsteady=
whereA P is the difference of a reference physical quanitgt the initial and steady states
andv is the averaged relaxation rate Bfbefore reaching the steady state. Using the rati
of the required sample si2¢,,.to the average number of particles per ééll. to estimate
Nsample 2Nd Nigop, We have

Mae- AP _
(Lm + Nsize) - Neeis - Tp,  for steady
v .
Tpsmc = T (B5)
Nsize* Neetr - Tp : A_Et’ for unsteady

'Fp consists of the following parts: that for selecting a collision partner and calculatil
the postcollision velocities, internal energies, 6Ty that for tracing its trajectory and
indexing its cell numberT_t_i ; and that for sampling its velocity, etdzamme IP and DSMC
have the sam&_; for the algorithms to compute molecular trajectories, and cellindexes &
identical to them. They also have the safig,,gqp.e for the number of operations to compute
macroscopic physical quantities, such as flow velocity and shear stress from IP veloci
is the same as that from thermal velocities. The IP algorithm, resulting from Eq. (3), rest
in one more arithmetic mean operationfa," to compute the postcollision information
velocities. Such an increase is small in comparison with the total number of operation:
complete a molecular collision. Therefore, the values,pin the IP and DSMC methods
are close.

The IP technique may greatly reduce the required sampleMsifar low-speed flows
in comparison with the DSMC method; e.d\,. is decreased f(for the Rayleigh flow
described in Section 5. Therefore, the DSMC-based IP scheme, as stated by Eq. (B¢
quite helpful in improving the computational efficiency.
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