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Molecular-based numerical schemes, such as the direct simulation Monte Carlo
(DSMC) method, are more physically appropriate for rarefied gas flows in microelec-
tromechanical systems (MEMS). It is difficult for them to be statistically convergent,
however, because the statistical fluctuation becomes insurmountably large at the low
Mach numbers that are characteristic of MEMS. An information preservation (IP)
technique is proposed to address this issue. This technique assigns each simulated
molecule in the DSMC method two velocities. One is the molecular velocity used
to compute the molecular motion following the same steps as the DSMC method.
The other is called information velocity. It corresponds to the collective velocity of
an enormous number of real molecules that the simulated molecule represents. Us-
ing the information velocity to compute macroscopic velocity and shear stress may
remove the statistical fluctuation source inherent in the DSMC method that results
from the randomness of the thermal velocity. The IP technique has been applied to
benchmark problems, namely Couette, Poiseuille, and Rayleigh flows, in the entire
Knudsen regime. The characteristic velocities in these flows range from 0.01 to 1 m/s,
much smaller than the thermal velocity of about 340 m/s at room temperature. The
meaningful results are obtained at a sample size of 103–104, in comparison with a
sample size of 108 or more required for the DSMC method at such a range of flow
velocity. This results in a tremendous gain in CPU time. The velocity distributions,
surface shear stress, and mass flux given by the IP calculations compare quite well
with exact solutions at the continuum and free molecular limits, and with the nu-
merical solutions of the linearized Boltzmann equation and experimental data in the
transition regime. c© 2001 Academic Press
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1. INTRODUCTION

Advances in micromachining technology have allowed successful fabrication of many
microelectromechanical systems (MEMS). The characteristic size of MEMS ranges from
submillimeter to submicrometer. This provides a tool with wide applications to observe,
measure, and control a new world [1]. In the small-scale world, noncontinuum, rarefied gas
flow phenomena become prevalent, which may make MEMS behave quite differently from
their counterparts in macroscopic machinery.

To understand this kind of flow, basic experiments have been carried out, for example,
those on microchannel gas flows [2–10]. The typical channel dimensions were about one
micrometer high by several tens of micrometers wide by several thousands of micrometers
long. The flow was driven by the pressure difference between the inlet and the outlet, with
a velocity of about 0.2 m/s. The measured mass flux was higher than the Navier–Stokes
(N–S) solution based on nonslip boundary condition [2–10]. When the slip velocity

us = 2− σ
σ

λ
du

dn

∣∣∣∣
s

(1)

was introduced along the microchannel surfaces, and the tangential momentum accom-
modation coefficientσ was properly chosen, the N–S solution became in agreement with
experiment [8, 9], whereλ is the molecular mean free path, anddu

dn|s denotes the nor-
mal velocity gradient at the surfaces. As the noncontinuum effect increases further, kinetic
theory indicates that the N–S equations become invalid. This is also verified by microchan-
nel experiment [9]: A significant discrepancy between the slope of the measured and slip
Navier–Stokes flow conductances is found as the outlet pressure of helium flows decreases.

Molecular-based schemes are more physically appropriate for rarefied gas flows. The
most popular approach is the direct simulation Monte Carlo (DSMC) technique that was
developed and popularized in the context of hypersonic aerospace applications [11]. Some
researchers have applied it to microchannel flows [12–15] and have found it very difficult to
obtain statistically convergent results under experimental conditions of interest in MEMS
[2–10]. Unlike hypersonic problems, microdevices often operate at low or moderate Mach
numbers, which are characterized by a small ratio of macroscopic to thermal velocity.
Because the statistical scatter inherent in DSMC decreases with the inverse square root of
the sample size, an extremely large sample size is required to reduce it to a level that is small
in comparison with the macroscopic velocity. This makes DSMC simulation of MEMS flows
extremely time-consuming. Actually such a simulation is beyond the capabilities of current
computers [13, 15].

An information preservation (IP) technique has been proposed to address this issue [16].
It assigns each simulated molecule in the DSMC method two velocities. One is the thermal
velocity used to compute molecular motion following the same steps as the DSMC method.
The other is called information velocity; it corresponds to the collective velocity of the
enormous number of real molecules that the simulated molecule represents. Macroscopic
velocity and shear stress are computed from the information velocity to remove the statistical
scatter source inherent in the DSMC method due to the randomness of the thermal velocity.
A preliminary study [16] showed that the IP technique was highly effective in reducing the
statistical scatter.

In this paper, the IP technique will be systematically studied. First, the statistical fluc-
tuation inherent in the DSMC method will be analyzed. Second, the IP technique will
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be described, and molecular collision diameters in accordance with the IP technique will
be computed using experimental data on viscosity coefficients. Next, the IP method will be
applied to benchmark problems. Finally, conclusions will be given.

2. STATISTICAL SCATTER INHERENT IN THE DSMC METHOD

As with most molecular-based numerical methods, the DSMC method suffers from sta-
tistical scatter. Scatter is generally regarded as the most serious practical and theoretical
difficulty associated with this method. As pointed out by many researchers [12–15], such a
difficulty becomes insurmountable for low-speed flows.

To clarify this fact, let us look at how the DSMC method computes macroscopic velocity
U` in a cell. Consider a uniform flow with velocityuk ; then

U` = 1

N

N∑
k=1

ck = uk + 1

N

N∑
k=1

ct,k, (2)

where N is the sample size of simulated molecules in the cell, andck is the molecular
velocity. According to kinetic theory,ck consists of two parts: the thermal partct,k and the
macroscopic partuk. The expressionct,k is random and obeys a Maxwellian distribution in
an equilibrium gas. The DSMC method storesck in a computer and uses it to compute both
the molecular trajectory andU`. Note that there is an explicit term1N

∑N
k=1 ct,k in Eq. (2)

that makesU` different from the exact value ofuk. It is actually a source that results in the
statistical fluctuation decreasing with the inverse square root of the sample size.

The order of this statistical scatter source is easily estimated through an actual DSMC
simulation. Consider a stationary homogeneous argon gas at temperature of 273 K. The
values of macroscopic velocity given by the DSMC method in 100 independent runs,
because of the existence of the scatter source, fluctuate around the exact value of zero.
The x components of the values against the sample sizes are partly given in Table I. For
example, the absolute maximumσmax at a sample size of 2× 106 is 0.5301 m/s. This is
unacceptable for many low-speed applications such as microchannel flows where the inflow
velocity in experiments [4–10] was about 0.2 m/s. Further increasing the sample size is
beyond the capabilities of current computers, particularly for multidimensional flows.

3. INFORMATION PRESERVATION METHOD

The IP technique assigns each simulated molecule in the DSMC method two velocities.
One is the molecular velocity (i.e.,ck), used to compute molecular motion following the
same steps as the DSMC method. The other is called information velocity; this is the collec-
tive velocity of the enormous number of real molecules that thesinglesimulated molecule
represents, and therefore corresponds touk. The term information velocity was invented to
distinguish it from macroscopic velocity, which is understood as an average of molecular ve-
locities over real molecules represented bymanysimulated molecules in the DSMC method.
The IP technique employs the information velocity to compute the macroscopic velocity,

U` = 1

N

N∑
k=1

uk = uk. (3)
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TABLE I

Statistical Fluctuation vs Sample Size in DSMC Simulation

of a Stationary Homogeneous Argon Gas at 273 K

u f
a in m/s at different sample sizes

No. of runs 2× 104 2× 105 2× 106 2× 107 2× 108

1 2.3215 −0.2243 −0.1301 0.0904 0.0157
2 −0.4853 −0.0825 0.1074 −0.1038 −0.0023
3 −2.5338 −0.1724 −0.1802 −0.0397 0.0267
4 −2.0137 0.7793 −0.1394 0.0138 0.0022
5 −0.8144 0.3451 0.1233 0.1202 0.0014

. . . . . .

. . . . . .

. . . . . .
98 −1.2243 −0.1722 0.0231 −0.0722 −0.0043
99 −1.5905 −0.4683 −0.0655 −0.0207 0.0121

100 −5.0029 0.7412 0.0065 −0.0665 0.0226
σmax 6.2537 1.8344 0.5301 0.1546 0.0365

a u f is thex component of the macroscopic velocity fluctuation caused by the statistical
scatter, with the amplitude ofσmax.

The statistical scatter source1N
∑N

k=1 ct,k in the DSMC formula (2) is removed in the IP
formula (3). For a uniform flow, the macroscopic velocity calculated using (3) is the exact
value ofuk at any sample size. Since the collective information propagates directly through
molecular motion, a correct transport rate is expected over the entire Knudsen regime.

An implementation of the IP method can be summarized as follows:

(1) Assign simulated molecules an information velocityuk and molecular velocityck.
(2) Set the initial value ofuk to be the initial flow velocity.
(3) Move the molecules usingck with the same algorithms and models as the DSMC

method that have been described in detail in Ref. [11].
(4) In a time step1t, uk may be changed as a result of the following causes:

(4a) Impact with a wall. Set the reflected information velocity in accordance with the
statistical behavior of an enormous number of real molecules. For example, it is equal to
the wall velocity for a diffusely reflecting surface.

(4b) Entry into the computational domain from the boundaries. Set the information
velocity in accordance with the boundary conditions.

(4c) Acceleration by external forces acting on a cell,

a= F
ρ1V

, (4)

whereF is the sum of the external forces, andρ and1V are the density and volume of
the cell, respectively. The acceleration will contribute a velocity incrementa ·1t to every
simulated molecule within the cell.

(4d) Collision with other particles. A simple scheme satisfying momentum conserva-
tion is employed to distribute postcollision information velocities of two simulated particles,

u′i,1 = u′i,2 =
m1u∗i,1+m2u∗i,2

m1+m2
, (5)



SIMULATING LOW-SPEED RAREFIED GAS FLOWS 397

where superscripts * and′ denote pre- and postcollision, respectively. An alternative scheme
is to keep the information velocities unchanged during the collision process. Both schemes
were tested in simulation of Couette, Poiseuille, and Rayleigh flows, and both gave identical
results. This is easily understood because the scattering of the thermal velocities during
the collision process is isotropic in the center of mass frame of reference according to
the variable hard sphere (VHS) model [11, 17], which is used to describe the interaction
between simulated particles. Such an isotropic scattering makes schemes that satisfy the
momentum conservation the same in a statistical sense.

(5) Compute macroscopic quantities using the information quantities. The shear stress
on a surface element with area1Aw during a sampling intervalts is equal to

τw =

Nw∑
k=1

mj
(
uin
τ,k − ure

τ,k

)
ts1Aw

, (6)

whereNw is the number of molecules hitting the element duringts, subscriptτ denotes the
tangential direction of the element, and superscriptsin andre denote the values before and
after striking the element, respectively. The macroscopic velocity in a cell is an arithmetic
mean of all sampling information velocities duringts and is obtained using Eq. (3).

(6) For steady flows, repeat steps 3 and 4 until the flow reaches a steady state. Then
repeat steps 3–5 to sample and obtain the macroscopic velocity distribution and shear stress.
For unsteady flows, repeat steps 2–5 over the evolution period to obtain the macroscopic
quantities period through ensemble average.

4. MOLECULAR COLLISION DIAMETERS

Molecular interaction is usually weakly attractive at a large distance and strongly repulsive
at a short distance. An approximation is to take it into account only when the distance
decreases to a finite cutoff value that is defined as molecular collision diameter. It is known
that, to obtain accurate information from kinetic analysis and calculation, collision diameters
must be chosen to give agreement between kinetic and experimental data for some basic
quantity, such as viscosity coefficient [18]. Therefore, they are not universal but depend on
molecular interaction models. For instance, the collision diameters given by the variable
hard sphere (VHS) model [17] and by the variable soft sphere model [19], which are often
employed in DSMC calculations, are different.

The IP technique computes postcollision information velocities according to Eq. (5),
whereas the DSMC method distributes them along with the thermal velocities. This differ-
ence between the molecular interactions may make the collision diameters in accordance
with the DSMC and IP methods slightly different. A procedure to determine the collision
diameters in accordance with IP using experimental data on viscosity is given in Appendix A.

The hard sphere model assumes that the collision diameter of a molecule is a constant and
the scattering from molecular collision is isotropic in the center of mass frame of reference.
It is often employed in kinetic studies [11, 18, 20–23]. The procedure given in Appendix A
has been applied to compute IP collision diametersdHS under this model. The values for
five common gases (He, Ar, N2, O2, and CO2) obtained using experimental data on the
coefficients of viscosity at 273 K [18] are given in Table II. The corresponding shear stress
distributions along they direction in the upper half channel of the Couette flow are given
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TABLE II

Collision Diameters in Accordance with the IP Method

at a Reference Temperature of 273 K

He Ar N2 O2 CO2

dHS× 1010(m) 2.365 3.693 4.128 3.948 5.013
dref × 1010(m) 2.463 4.283 4.312 4.295 5.620
ω[18] 0.657 0.811 0.738 0.773 0.933

in Table III. The resulting coefficients of viscosityµcal× 105 (N sm−2) are 1.876, 2.135,
1.660, 1.919, and 1.388, respectively, and compare well with the measured data 1.865,
2.117, 1.656, 1.919, and 1.380 [18].

Coefficients of viscosity in the hard sphere model are proportional to the temperature
to the power of 0.5. For real gases, however, the powerω often significantly differs from
0.5. (The values ofω for many gases were given in Table 14 in [18], and those for He,
Ar, N2, O2, and CO2 are included in Table II.) To match this real-gas characteristic, the
VHS model was introduced [17]. It assumes that the scattering from molecular collision is
isotropic in the center of mass frame of reference, whereas the collision diameter is a function
of the relative velocitycr ,

d = dref

[(
2kTref/mr c2

r

)ω−0.5

0(2.5− ω)
]1/2

(7)

wheredref is the reference collision diameter at reference temperatureTref andmr is the
reduced mass. Using the procedure given in Appendix A,dref in accordance with IP has

TABLE III

Shear Stress Distributions for Five Gases in the Upper Half Channel

of the Couette Flow (Kn = 0.01, uw = 1 m/s,T = 273 K) Given by IP Cal-

culations with the Hard-Sphere Model

Shear stress (N/m2)

y/h He Ar N2 O2 CO2

0.0000 1.0412 3.2740 2.6896 2.9151 3.4353
0.0333 1.0424 3.2723 2.6879 2.9133 3.4261
0.0667 1.0436 3.2719 2.6880 2.9137 3.4187
0.1000 1.0440 3.2715 2.6901 2.9107 3.4211
0.1333 1.0423 3.2757 2.6908 2.9087 3.4266
0.1667 1.0430 3.2659 2.6882 2.9061 3.4352
0.2000 1.0482 3.2847 2.6827 2.8942 3.4289
0.2333 1.0489 3.2641 2.6725 2.8976 3.4305
0.2667 1.0482 3.2734 2.6973 2.9256 3.4254
0.3000 1.0436 3.2918 2.7006 2.9209 3.4496
0.3333 1.0485 3.2692 2.7301 2.9332 3.4601
0.3667 1.0426 3.3026 2.7183 2.9286 3.4393
0.4000 1.0477 3.2828 2.7262 2.9178 3.4444
0.4333 1.0455 3.2933 2.7071 2.9201 3.4583
0.4667 1.0447 3.2515 2.6936 2.9227 3.4461
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TABLE IV

Shear stress Distributions for Helium at Five Temperatures in the Upper Half

Channel of the Couette Flow (Kn = 0.01, uw = 1 m/s) Given by IP Calculations

with the VHS Model

Shear stress (N/m2)

y/h 89.7 K 190.6 K 256.7 K 372.8 K 456.7 K

0.0000 0.9144 0.9826 1.0297 1.0595 1.0923
0.0333 0.9149 0.9855 1.0305 1.0585 1.0917
0.0667 0.9154 0.9872 1.0312 1.0580 1.0926
0.1000 0.9159 0.9898 1.0333 1.0572 1.0908
0.1333 0.9160 0.9951 1.0359 1.0543 1.0888
0.1667 0.9171 0.9968 1.0351 1.0557 1.0872
0.2000 0.9161 0.9982 1.0348 1.0621 1.0866
0.2333 0.9165 0.9961 1.0362 1.0576 1.0885
0.2667 0.9182 0.9939 1.0336 1.0551 1.0870
0.3000 0.9158 0.9957 1.0299 1.0563 1.0893
0.3333 0.9134 0.9973 1.0291 1.0631 1.0902
0.3667 0.9118 0.9881 1.0315 1.0606 1.0937
0.4000 0.9116 0.9855 1.0336 1.0612 1.0967
0.4333 0.9127 0.9940 1.0330 1.0656 1.0966
0.4667 0.9101 0.9408 1.0295 1.0684 1.0976

been computed. The resulting values ofdref for the five common gases are given in Table II.
The relation of shear stress and viscosity versus temperature may be studied with this model.
The shear stress distributions along they direction in the upper half channel of the Couette
flow for helium at five temperatures of 89.7, 190.6, 256.7, 372.8, and 456.7 K are given
in Table IV. It is seen that the shear stress increases as the temperature increases. This is
easily understood because larger thermal velocities at higher temperatures accelerate the
frequency of momentum exchange between the gas and the plates. Figure 1 compares the
relations of coefficient of viscosity of helium to temperatures given by the IP method, theory,
and experiment [18], which agree quite well.

FIG. 1. Relation of viscosity coefficient of He versus temperature given by the IP method, theory, and
experiment.
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5. UNIDIRECTIONAL FLOWS

Consider three typical unidirectional flows, namely, Couette, Poiseuille, and Rayleigh
flows. They cover the most fundamental and important mechanisms that control a number
of flows in MEMS applications. Because of the clear mechanisms, any drawbacks, if as-
sociated with a new method, will be easily found. Therefore, they have been widely used
as benchmark problems to test and verify new analytical and numerical methods. Exact
solutions are available at the continuum and free molecular limits for these flows, and there
are analytical or numerical solutions of the linearized Boltzmann equation in the transition
regime [20–23].

The linearized Boltzmann equation was analytically or numerically solved under the fol-
lowing assumptions [20–23]: (1) the gas molecules are hard spheres with uniform size and
undergo complete elastic collisions between themselves; (2) the plate surfaces are diffusely
reflecting; and (3) the disturbances are so small that the Boltzmann equation and boundary
conditions may be linearized around an equilibrium state at rest. The IP simulated condi-
tions are chosen to be consistent with these assumptions. The simulated gas is argon with
temperature and pressure of 273 K and 0.01 atm, respectively. The hard sphere model is
employed to describe molecular interaction. The plate surfaces are assumed to be diffusely
reflecting, with the same temperature as the gas. The plate velocityuw is 0.2 m/s for the
Couette flow and 1 m/s for the Rayleigh flow. The pressure distribution along thex direc-
tion for the Poiseuille flow is the same as that used in numerically solving the linearized
Boltzmann equation [21],

p = po(1+ αx/h). (8)

The values ofpo andα are chosen to be 0.01 atm and−2× 10−5, respectively, which result
in a flow velocity of about 0.01 m/s. The characteristic velocities in the three flows are
all very small in comparison with the thermal velocity of about 340 m/s. Such small flow
velocities not only are of great interest in many MEMS applications, but also may strictly
test the ability of the IP technique to reduce the statistical fluctuation in the conventional
DSMC method.

5.1. Couette Flow

The Couette flow is a steady flow that is driven by the surface shear stresses of two infinite
and parallel plates moving oppositely along their own planes (Fig. 2). The Knudsen number

FIG. 2. Schematic diagram of the Couette flow.
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TABLE V

Computational Parameters for the Couette and Poiseuille flowsa

Kn 0.01 0.2/
√
π 2/

√
π 20/

√
π 100

Nm 9,000 900 900 900 900
Nc 300 30 30 30 10
1`/λHS 0.33 2.95× 10−1 2.95× 10−2 2.95× 10−3 0.001

a The time step is 0.3λHS/νm, with νm =
√

2kT/m.

is defined asKn = λHS/h, whereh is the distance between the plates andλHS is the mean
free path, which is about 6.36× 10−6 m under the present conditions (0.01 atm and 273 K).

The IP simulation starts from a stationary uniform flow field. The computational param-
eters are given in Table V, whereNm is the total number of simulated molecules,Nc is the
number of cells, and1` is the cell size. When the flow evolves and reaches a steady state,
the code starts to sample. The macroscopic velocity and surface shear stress are obtained
according to step 5 in Section 3.

In the transition regime, three Knudsen numbers are considered: 0.2/
√
π, 2/
√
π , and

20/
√
π . To resolve the flow fields well, 30 cells are employed in IP calculation for all the

three cases. With a slip velocity model

u|y=±h/2 = ±uw ∓ 2− σ
σ

λHS

du

dy

∣∣∣∣
y=±h/2

, (9)

the velocity distribution across the channel given by the Navier–Stokes equation is

uNS

uw
= 2

1+ 2(2− σ)Kn/σ

y

h
. (10)

For the diffusely reflecting surfaces, the tangential momentum accommodation coefficient
σ is equal to 1. Figure 3 compares the velocity profiles given by the IP method, the linearized

FIG. 3. Comparison of velocity profiles in the upper half channel of the Couette flow in the transition
regime given by the IP method, linearized Boltzmann equation, and slip Navier–Stokes equations.KnS =
0.2/
√
π, Knm = 2/

√
π , andKnl = 20/

√
π .
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FIG. 4. Relation of drag versus Knudsen number for the Couette flow.

Boltzmann equation [20, 21], and Eq. (10). The velocity at the channel surface (y/h = 0.5)
significantly decreases asKn increases. The IP profiles are in excellent agreement with the
numerical solutions of the linearized Boltzmann equation [21], which are more accurate
than the four-moment solutions based on the second approximation [20]. The slip N–S
profiles agree with the other three atKn = 0.2/

√
π , but deviate from them asKn increases.

In the continuum regime (Kn = 0.01), the IP and slip N–S velocity profiles compare
quite well; e.g., the gas velocities at the surfaces given by the IP method and model (9) are
±0.9791uw and±0.9804uw, respectively. In the free molecular regime (Kn = 100), the
gas velocity adjacent to the plate surfaces is only about 3% ofuw. Such a discontinuity is
a typical phenomenon of very large Knudsen flows. During a time step of 0.3λHS/νm, the
average number of a simulated molecule colliding with the lower and upper plates is about
33. This means that the information velocity of a certain simulated molecule frequently leaps
from −uw to uw, or vice versa. The value at the sampling moment, i.e., at the end of the
time step, is subject to the final collision that occurs at the lower or upper plate. The thermal
velocity plays a role in such a process and therefore results in a statistical fluctuation.
To reduce this fluctuation, 4× 104 sampling time steps are employed in simulating the
Kn = 100 case, much larger than 200 for the continuum case and 2000 for the transitional
cases.

Figure 4 compares the relation of the surface shear stress versus the Knudsen number
given by various methods. The normalization factor is the collisionless solutionτFM =
ρνmuw/

√
π . The IP results agree quite with the exact solution in the free molecular regime,

with the numerical Boltzmann solution [21] in the transition regime, and with the slip
Navier–Stokes solution (σ = 1)

τNS

τFM

= 5πKn

8(1+ 2Kn)
(11)

in the continuum regime.

5.2. Poiseuille Flow

The plane Poiseuiile flow is a steady flow confined between two stationary infinite and
parallel plates and is driven by a pressure gradient parallel to the plates (Fig. 5). The IP
simulation starts from a uniform flow field. The acceleration that results from the pressure
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FIG. 5. Schematic diagram of the Poiseuille flow.

distribution (8) isa = αpo/ρh. During each time step1t , the x-components of both in-
formation and thermal velocities of simulated molecules obtain a velocity incrementa1t .
Using the ideal gas equation of state, we have

a1t = 0.5ανmKn1t∗, (12)

where1t∗ = νm1t/λHS, andKn has the same definition as in the Couette flow. On the
other hand, the molecules are retarded when they collide with the stationary plates that
are assumed to be diffusely reflecting: The information velocities become zero, while the
molecular velocities are computed according to a Maxwellian distribution. The flow evolves
and reaches a steady state when the acceleration and retardation are in balance.

Figure 6 shows the relation of the mass fluxQM with the Knudsen number given by the
IP method, the linearized Boltzmann equation [22], experiment [24], and the N–S equation
with the slip boundary condition (1).QM has been normalized byρu∗h, with u∗ = ανm.
The comparison of the IP mass flux with the numerical Boltzmann solution [22] and the
experimental data [24] in the transition and near free molecular regimes is satisfactory. The
slip Navier–Stokes mass flux (σ = 1),

QNS
M

ρu∗h
= 2(Kn−1+ 6)

15
√
π

, (13)

FIG. 6. Relation of the normalized mass flux versus Knudsen number for the Poiseuille flow. The 1st, 14th,
and 18th experimental data from the smallKn side are for air, 2nd, 3rd, 7th, 10th, 13th, and 15th data for CO2,
4th, 8th, and 9th data for He, 5th, 11th, and 16th data for H2, and 6th, 12th, 17th, and 19th data for feron-12.
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agrees well with the IP results, as the Knudsen number is less than 0.05. There is a mini-
mum mass flux at some intermediate Knudsen number. This minimum was first observed
experimentally by Knudsen [25] and therefore is often referred to as the Knudsen min-
imum or the Knudsen paradox. The existence of such a minimum may be theoretically
proven. The Navier–Stokes solution (13) shows that in the continuum regime the mass
flux decreases as the Knudsen number increases, while the free molecular theory indi-
cates that the mass flux through a duct with a finite lengthL is proportional to the log-
arithm of L/h [26]. Hence, the free molecular mass flux at a large enoughL/h will be
higher than the continuum solution at a small but nonzeroKn. Therefore, the minimum
inevitably appears at some intermediateKn. The confirmation by the present IP calcula-
tion of the Knudsen minimum and its excellent agreement with the exact numerical solu-
tion of the linearized Boltzmann equation and experimental data near this minimum show
clearly the fitness of the IP technique in predicting fine flow characteristics in the transition
regime.

Figures 7a–7c show the velocity profiles obtained using the IP method, the linearized
Boltzmann equation [22], and the slip Navier–Stokes equation at Knudsen numbers of
0.2/
√
π, 2/
√
π , and 20/

√
π . The IP profiles compare well with the numerical Boltzmann

FIG. 7. Comparison of IP, linearized Boltzmann, and slip Navier–Stokes velocity profiles in the transition
regime for the Poiseuille flow: (a)KnS = 0.2/

√
π; (b) Knm = 2/

√
π; (c)Knl = 20/

√
π.
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FIG. 8. Comparison of IP and slip N–S velocity profiles in the continuum regime(Kn = 0.01) for the
Poiseuille flow.

solution [22]. The slip N–S solution (σ = 1)

uNS

u∗
= 1+ 4Kn− 4y2/h2

5
√
πKn

(14)

deviates from the two others asKn increases.
Figure 8 compares the IP and slip N–S velocity profiles atKn = 0.01, which agree

with each other. Figure 9 shows the IP velocity profile atKn = 100. There is a velocity
discontinuity between the plate surfaces and the adjacent gas as expected. The number of
sampling time steps is 500 for the Knudsen 0.01 case, 5000 for the transitional flows, and
2× 105 for the Knudsen 100 case to reduce the statistical scatter caused by the frequent
leaps of the simulated molecules between the lower and upper plates.

5.3. Rayleigh Flow

In the Rayleigh flow, the stationary plate acquires a velocity ofuw in the x direction at
the initial time (t = 0). This impulsive motion of the plate induces an unsteady gas flow

FIG. 9. IP velocity profile in the free molecular regime(Kn = 100) for the Poiseuille flow.
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FIG. 10. Schematic diagram of the Rayleigh flow.

(Fig. 10). The ensemble average is employed in IP simulation of the unsteady process. The
computational domain is between the plate surface and an outer boundary. The specularly
reflecting condition is applied to the outer boundary. It is chosen far away from the plate to
avoid possible backward disturbance to the gas motion near the plate. The computational
parameters are given in Table VI, whereNs is the sampling interval of time step.

For a time much less than the mean collision timeτo(= λHS/νm), few collisions take
place. The situation is close to the free molecular flow that has the velocity distribution

uFM = 0.5uwerfc(y/νmt), (15)

where erfc denotes the complementary error function.
For a time much longer than the mean collision time, so many collisions take place that

the flow can be described by the Navier–Stokes equations. With a slip boundary condition

u|y=0 = uw + λHS

du

dy

∣∣∣∣
y=0

, (16)

the Navier–Stokes velocity solution may be written as [27]

uNS

uw
= erfc

(
y∗

2
√

aot∗

)
− exp(y∗ + aot∗) erfc

[
y∗

2
√

aot∗
+ √aot∗

]
, (17)

whereao = 5
√
π/16, y∗ = y/λHS, andt∗ = t/τc.

The linearized Boltzmann equation has been solved using the four-moment method for
two special cases [23]. The solution may be written as

uS
4−m

uw
= S(φ1)

[
0.139e−b1y∗ − 6.10φ1e−b1y∗]+ S(φ2)

[
0.361e−b2y∗ + 7.36φ2e−b21y∗] (18)

TABLE VI

Computational Parameters for the Rayleigh Flow

t/τc Nm Nc Ns Lo/λHS 1`/λHS 1t/τc

0.01 900 30 5 0.1 3.33× 10−3 0.002
5 1,500 50 5 15 0.3 0.2

100 24,000 800 5 240 0.3 0.2
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FIG. 11. Comparison of IP and theoretical velocity profiles at the free molecular limit for the Rayleigh flow.

for a short time (t ¿ τc), and

uL
4−m

uw
= erfc(d0y∗/2t∗)− 1.24 exp

(
d2

o y∗/4t∗
)/

√
π t∗ + 0.292 exp(−6.86y∗)

/√
π t∗ (19)

for a long time (t À τc), whereφ1 = t∗ − a1y∗, φ2 = t∗ − a2y∗,a1 = 0.799,a2 = 3.33,
b1 = 3.57, b2 = 7.42, do = 1.54, andS(z) is a step function that is equal to 0 and 1 for
z < 0 andz > 0, respectively.

Figure 11 compares the velocity profiles att = 0.01τc given by the IP method and
Eqs. (15) and (18). The IP profile compares very well with the exact solution (15) of the
collisionless theory. The four-moment profile is seen as discontinuous, and the part not
shown slightly increases from−5.9(y∗ = 0.0031) to−5.7(y∗ = 0.0125). This discontinu-
ity is not physically reasonable.

Figure 12 compares the velocity profiles att = 100τc given by the IP method and Eqs. (17)
and (19). The IP and slip N–S profiles are in excellent agreement, and the four-moment
profile slightly differs from them. The difference between the four-moment solutions and
exact solutions and the IP results may be caused by the poverty of the first approximation,

FIG. 12. Comparison of IP and theoretical velocity profiles at the continuum limit for the Rayleigh flow.
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FIG. 13. Comparison of IP, DSMC, and theoretical velocity profiles in the transition regime for the Rayleigh
problem. The DSMC sample size is 2× 108, in comparison with the IP sample size of 6× 103. (a) t = τc; (b)
t = 5τc.

which was the only approximation employed in the analysis [23]. In fact, the first approx-
imation solution for the Couette flow was found to deviate significantly from the second
and third approximation solutions [20].

For a time comparable with the mean collision time, the DSMC method is employed to
give a benchmark solution. Such a calculation, however, is very time-consuming. To reduce
the DSMC statistical scatter to a level that is small in comparison with the characteristic
velocity uw of 1 m/s, an enormous sample size of 2× 108 is used. It takes about 180
CPU h on a DEC Alpha server 1000A, about 3× 104 times as long as required by the IP
method. Figures 13a and 13b compare the IP and DSMC velocity profiles att = τc and
t = 5τc, respectively. The collisionless and four-moment, (15) and (19) are also shown as
references. A satisfactory agreement is obtained between the IP and DSMC results, though
some statistical fluctuation is still seen in the latter.

Figure 14 shows the relation of the normalized surface shear stress versus time given by
the IP and other methods. The normalization factor is the free molecular solution

τFM = ρνmuw
2
√
π
. (20)

FIG. 14. Relation of drag versus time for the Rayleigh flow.
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The slip N–S solution obtained using Eqs. (16) and (17) is

τNS

τFM

= 2
√
πao exp(aot∗)erfc

(√
aot∗

)
. (21)

The IP results agree quite well with the collisionless solution att ¿ τc, with the DSMC
results att ∼ τc, and with the slip N–S solution att > 5τc.

6. CONCLUSIONS

An information preservation technique was proposed to overcome the serious statistical
fluctuation inherent in the DSMC method for low-speed rarefied gas flows. This technique
was applied to benchmark problems, namely the Couette, Poiseuille, and Rayleigh flows,
over the entire Knudsen regime. The characteristic velocities in these flows ranged from 0.01
to 1 m/s, which were much smaller than the thermal velocity of about 340 m/s. Meaningful
results were obtained at a sample size of 103–104, in comparison with a sample size of 108

or more required for the DSMC method at such a range of flow velocity. This results in
a tremendous gain in CPU time. A comparison of the velocity distributions, surface shear
stresses, and mass fluxes given by the IP technique with exact solutions at the continuum and
free molecular limits, and with numerical solutions of the linearized Boltzmann equation
[21, 22], experimental data [24], and DSMC results in the transition regime, showed an
excellent agreement.

APPENDIX A

Procedure for Computing IP Collision Diameters

Consider a plane Couette flow (Fig. 2). The plates move oppositely at a speed of 1 m/s.
The IP simulated conditions are the same as those in experiments to measure viscosity, i.e.,
101, 32 Pa and 273 K [18]. The plate surfaces are assumed to be diffusely reflecting, with
the same temperature as the gas. The distance between the plates is 100λHS , whereλHS is
the molecular mean free path under the hard sphere model [18],

λHS= 16

5
√
π

µ

ρνm
. (A1)

Hereµ is the coefficient of viscosity,νm =
√

2kT/m,m is the molecular mass,k is the
Boltzmann constant, andρ andT are the gas density and temperature, respectively. The
simulation employs 300 uniform cells, with 30 simulated molecules in each cell initially.
The time step is 0.3λHS/νm.

The simulation starts from an initial flow field with a linear velocity distribution. After
10,000 time steps, it reaches a steady state. Then the code starts to sample. The shear stress
acting on each side of a cell is calculated as

τxy =

N−∑
j=1

mj u j −
N+∑
j=1

mj u j

ts1A
, (A2)
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whereN− and N+ denote the numbers of simulated molecules across the side from the
negative and positive directions ofy, respectively,u is the x component of information
velocity,ts is the sampling time, and1A is the side area. The coefficient of viscosity results
from

µ = τxy1y

1U
, (A3)

where1U = Uo −Ua,1y = yo − ya,Uo andUa are the macroscopic velocities in the cell
and its adjacent cell, andyo andya are they coordinates of the cell centers. The coefficient
of viscosity is then obtained by averaging over all cells except those in the Knudsen layer
close to the surfaces.

For the hard sphere model, the molecular collision diameters are initially set to be

dHS=
(

5mνm

16
√

2πµ

)1/2

; (A4)

for the variable hard sphere (VHS) model [22], the reference collision diameters are initially
set to be

dref =
[

5
√

mkT/π

4(5− 2ω)(7− 2ω)µ

]1/2

. (A5)

The calculated coefficient of viscosity decreases as the value ofdHS or dref increases for the
same type of gas. The acceptable value needs to satisfy the condition∣∣∣∣µcal

µexp

− 1

∣∣∣∣ < 0.01, (A6)

whereµcal andµexp are the calculated and measured coefficients of viscosity, respectively.

APPENDIX B

Computational Efficiency of the IP Method

Since the IP technique is based on the DSMC method, we need to analyze the DSMC
computational efficiency first. The total CPU time used in DSMC calculations may be
expressed as

TDSMC= Nstep · T̄step, (B1)

whereNstep is the total number of time steps,̄Tstep is the average CPU time spent each time
step,

T̄step= Ncell · Mave · T̄p, (B2)

Ncell is the number of cells,Mave is the average number of particles per cell, andT̄p is the
average CPU time spent per particle.Nstep has different expressions for steady and unsteady
problems,

Nstep=
{

Nsteady+ Nsample, for steady

Nloop · Nsingle, for unsteady,
(B3)
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whereNsteadyis the number of time steps needed to evolve and reach a steady state from an
initial stateNsampleis the number of sampling time steps,Nloop is the number of independent
runs for generating ensemble statistics, andNsingle is the number of time steps in a single
run, which is the ratio of the evolution periodTE to the time step1t . Nsteadymay be written
as

Nsteady= 1P

v ·1t
, (B4)

where1P is the difference of a reference physical quantityP at the initial and steady states
andv is the averaged relaxation rate ofP before reaching the steady state. Using the ratio
of the required sample sizeNsize to the average number of particles per cellMave to estimate
NsampleandNloop, we have

TDSMC =


(

Mave ·1P

v ·1t
+ Nsize

)
· Ncell · T̄p, for steady

Nsize · Ncell · T̄p · TE

1t
, for unsteady.

(B5)

T̄p consists of the following parts: that for selecting a collision partner and calculating
the postcollision velocities, internal energies, etc.,T̄coll; that for tracing its trajectory and
indexing its cell number,̄Tt−i ; and that for sampling its velocity, etc.,̄Tsample. IP and DSMC
have the samēTt−i for the algorithms to compute molecular trajectories, and cell indexes are
identical to them. They also have the sameT̄sample, for the number of operations to compute
macroscopic physical quantities, such as flow velocity and shear stress from IP velocities,
is the same as that from thermal velocities. The IP algorithm, resulting from Eq. (3), results
in one more arithmetic mean operation in̄Tcoll to compute the postcollision information
velocities. Such an increase is small in comparison with the total number of operations to
complete a molecular collision. Therefore, the values ofT̄p in the IP and DSMC methods
are close.

The IP technique may greatly reduce the required sample sizeN for low-speed flows
in comparison with the DSMC method; e.g.,Nsize is decreased 104 for the Rayleigh flow
described in Section 5. Therefore, the DSMC-based IP scheme, as stated by Eq. (B5), is
quite helpful in improving the computational efficiency.
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